
is a pointer in shared memory that
points to an integer also in shared
memory. On a distributed memory
computer, the elements of an array
declared with the type qualifier
shared are automatically spread
across the memory banks in a cyclic
manner. The PCP language translator
takes care of the addressing and com-
munication. Direct or pointer refer-
ences to an array element are
translated to code that accesses the
memory location on the processor
where the data resides.

These type qualifiers are
reducible, i.e., have no overhead, on
architectures for which there is no
hardware support for separate
shared and local memories, specifi-
cally SMPs and uniprocessors.

PCP Syntax

master
The processor whose current team

index is 0 executes the code inside a
master block. A master block is
often used for initialization as well as
input, output, and memory alloca-
tion. The master blocks are used to
initialize shared data, such as accu-
mulators, that all team members will
access.

UCRL-TB-122378 Rev. 1 URL: http://www-phys.llnl.gov/V_Div/PCP

Mission
PCP, the Parallel C Preprocessor,
is a programming model that
provides a simple yet powerful
shared-memory C parallel 
programming language for
uniprocessor, symmetric multi-
processor (SMP), and distrib-
uted memory massively parallel
processing architectures. 

Impact
PCP provides a means to solve
the problem of maintaining
multiple versions of a code for
multiple target architectures.
The PCP code runs on hard-
ware ranging from a uniproces-
sor to a cluster of SMPs to a
teraflop supercomputer with
distributed memories. PCP is a
low-level programming model
that allows the user to code all
types of scientific algorithms,
including irregular calculations.
The user can explicitly manage
data layout and communica-
tion via shared memory, thus
avoiding the high overhead
commonly associated with
message passing.

PCP is a simple shared-memory
parallel C programming model
that allows the user to program

for a wide range of parallel hardware
architectures. In the PCP program-
ming model there is one thread of
control per physical processor; these
processors form a team. Each proces-
sor executes the code from start to
finish. The initial group may be sub-
divided into subteams for nested par-
allel tasks.

PCP gives the user a global as well
as a local view of memory. PCP adds
to the ANSI standard C language a
few powerful keywords that express
parallelization, synchronization, and
data placement. PCP provides the
ANSI C-style type qualifier key-
words shared, private, and
teamprivate. These make it possi-
ble to specifically designate data
location directly or through the use
of pointers. These constructs may
also be applied to subteams of the
initial processor team to address
nested task parallelization. By proper
use of these type qualifiers, the same
PCP code can take advantage of local
memory bandwidth on distributed
memory machines and shared mem-
ory and caching on an SMP. 

For example,

shared int shared *ptr;

Team 1

Team 2 Team 3 Team N• • •

Meiko CS-2

Intel Paragon

SMP

SMP cluster

Cray T3D

Uniprocessor

PCP
code

PCP
The Parallel C Preprocessor

PCP runs on hardware ranging from a uniprocessor to a cluster of SMPs to a teraflop supercom-
puter with distributed memories.

Lawrence Livermore 
National Laboratory

University of California



PCP, the Parallel C Preprocessor

master { 
<declarations> 
<executable code> 

}

forall
The forall loop is the PCP con-

current equivalent of the C language
for loop. It achieves a fine-grained
parallelism by dividing up the itera-
tions of the for loop among the
members of the processor team:

forall 
(int i = <start>; 
<cond>; i += <step>) { 
work(i) 

} 

By default the indices of the loop
are interleaved among the members
of the executing team. The loop
index variable must be declared in
the forall statement.

Synchronization
Each of the processors of a team of

processors executes the code at its
own rate unless explicit synchroniza-
tion primitives are encountered. One
basic and frequently used form of
synchronization is the barrier:

barrier; 

A barrier requires all members of
the team to arrive at the barrier
before any are allowed to continue.
Each subteam has its own distinct
barrier. A barrier is often used after
a master block, or a forall loop,
to ensure that the preceding work is
complete before any processor is
allowed to continue.

Locks
Concurrency must be inhibited in

a statement that reads, modifies,
and then writes a variable that many
processors are modifying. To pre-
vent processors from destructively
interfering with each other, PCP
restricts entrance to a critical section
of a code so that only one processor

may execute it at a time. This is
accomplished by using a lock. 

PCP offers spin wait locks that
are implemented by variables of the
lock data type, which has the two
states, locked and unlocked. A
lock variable is a statically allo-
cated and initialized C data type: 

lock var = unlocked;

Functions that change the state
of a lock are lock() and
unlock(), which take the pointer
to the lock variable as an argument.
lock() waits until the lock is
unlocked and then atomically sets
it to locked. unlock sets it to
unlocked. For example: 

lock(&var);
<critical section>
unlock(&var);

Processor Teams
Static team splitting is used to

divide a number of tasks, known at
compile time, among subteams that
are split from the parent:

split [weight1] 
{ <task1> } 

and [weight2] 
{ <task2> } 

... 
and [weightn] 
{ <taskn> }

The tasks may be executed in
any order, including sequentially if
the team encountering the split
statement cannot be split for some
reason. If one task contains more
work than another, one may assign
weights to the blocks of work to
achieve load balancing. The
weights determine the fraction of
the current team’s processors that
are split into each subteam.
Weights are computed at run time.

The dynamic or loop-oriented
version of team splitting is the
splitall loop:

splitall 

(int i=<start>; <cond>;

i+= <step>[;[nteams][;tsize]])

{ <task> }

When a team encounters a 
splitall loop, it disassociates into
subteams to which the indices of the
loop are interleaved. The number
and size of the subteams may be
determined by the optional integer
expressions, nteams (for specifying
desired number of teams) and
tsize (for desired size of teams), or
by flags to PCP. If the appropriate
number of processors is available at
run-time, the user-supplied direc-
tives are followed. Otherwise, the
number of teams and team size are
determined by the implementation
based on one or the other of the
directives. The splitall task may
be a function of the splitall
index.

Summary
We have assembled ideas from

several sources to create a parallel
extension of ANSI C that can be
used efficiently on a wide range of
architectures. The design goal of the
parallel programming model is to
achieve reducibility on simpler
architectural targets as we move up
the evolutionary chain of architec-
ture complexity. PCP is a relatively
simple programming language that
allows the user explicit control of
both data loop parallelism and task
parallelism via processor teams.

PCP is currently being used to
implement the Accelerated Strategic
Computing Initiative’s (ASCI’s) fast
prototype code, EPIMETHEUS.
EPIMETHEUS is a mixed physics
code that combines piecewise para-
bolic method hydrodynamics and
radiation transport algorithms.

For further information, please contact
Eugene Brooks, 510-423-7341,
brooks3@llnl.gov; or 
Karen Warren, 510-422-9022, 
kwarren@llnl.gov 

Work performed under the auspices of the U.S. DOE by LLNL under contract No. W-7405-ENG-48


